Loading [MathJax]/extensions/TeX/autobold.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Berea_College/Electromagnetics_I/05%3A_Electrostatics/5.07%3A_Gauss_Law_-_Differential_Form
      However, even the Coulomb’s Law / direct integration approach has a limitation that is very important to recognize: It does not account for the presence of structures that may influence the electric f...However, even the Coulomb’s Law / direct integration approach has a limitation that is very important to recognize: It does not account for the presence of structures that may influence the electric field. For example, the electric field due to a charge in free space is different from the electric field due to the same charge located near a perfectly-conducting surface. In fact, these approaches do not account for the possibility of any spatial variation in material composition.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_I_(Ellingson)/05%3A_Electrostatics/5.07%3A_Gauss_Law_-_Differential_Form
      However, even the Coulomb’s Law / direct integration approach has a limitation that is very important to recognize: It does not account for the presence of structures that may influence the electric f...However, even the Coulomb’s Law / direct integration approach has a limitation that is very important to recognize: It does not account for the presence of structures that may influence the electric field. For example, the electric field due to a charge in free space is different from the electric field due to the same charge located near a perfectly-conducting surface. In fact, these approaches do not account for the possibility of any spatial variation in material composition.

    Support Center

    How can we help?