Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Berea_College/Electromagnetics_I/07%3A_Magnetostatics/7.14%3A_Inductance_of_a_Coaxial_Structure
      This analysis will also apply to the case where the length \(l\) pertains to one short section of a much longer structure; in this case we will obtain the inductance per length as opposed to the total...This analysis will also apply to the case where the length \(l\) pertains to one short section of a much longer structure; in this case we will obtain the inductance per length as opposed to the total inductance for the structure. To determine the inductance, we invoke the definition: \[L \triangleq \frac{\Phi}{I} \label{m0125_eIndDef} \] A current \(I\) flowing in the \(+z\) direction on the inner conductor gives rise to a magnetic field inside the coaxial structure.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electromagnetics_I_(Ellingson)/07%3A_Magnetostatics/7.14%3A_Inductance_of_a_Coaxial_Structure
      This analysis will also apply to the case where the length \(l\) pertains to one short section of a much longer structure; in this case we will obtain the inductance per length as opposed to the total...This analysis will also apply to the case where the length \(l\) pertains to one short section of a much longer structure; in this case we will obtain the inductance per length as opposed to the total inductance for the structure. To determine the inductance, we invoke the definition: \[L \triangleq \frac{\Phi}{I} \label{m0125_eIndDef} \] A current \(I\) flowing in the \(+z\) direction on the inner conductor gives rise to a magnetic field inside the coaxial structure.

    Support Center

    How can we help?