Search
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/01%3A_Introduction_to_Physics_Measurements_and_Mathematics_Tools/1.09%3A_Math_Review_of_Other_Topics/1.9.10%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_RuleIf Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add th...If Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add the two equations, the variable \(y\) will be eliminated. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper right).
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.07%3A_Solving_Linear_Equations_and_Inequalities/2.7.05%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_RuleIf Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add th...If Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add the two equations, the variable \(y\) will be eliminated. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper right).
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_Measurements_and_Mathematics_Tools/1.09%3A_Math_Review_of_Other_Topics/1.9.10%3A_Solving_a_System_of_Linear_Equations_with_Cramer's_RuleIf Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add th...If Equation \ref{eq2} is multiplied by the opposite of the coefficient of \(y\) in Equation \ref{eq1}, Equation \ref{eq1} is multiplied by the coefficient of \(y\) in Equation \ref{eq2}, and we add the two equations, the variable \(y\) will be eliminated. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper right).