Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 5 results
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/10%3A_The_Nature_of_Light/10.S%3A_The_Nature_of_Light_(Summary)
      The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the an...The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the angle between the direction of polarization and the axis of the filter.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/01%3A_The_Nature_of_Light/1.S%3A_The_Nature_of_Light_(Summary)
      The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the an...The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the angle between the direction of polarization and the axis of the filter.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)
      The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the an...The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the angle between the direction of polarization and the axis of the filter.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/13%3A_Propagation_of_Electromagnetic_Waves/13.09%3A_Propagation_of_Electromagnetic_Waves_(Summary)
      every point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the wave itself; the new wave front is a plane tangent to all of the wavelets when a l...every point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the wave itself; the new wave front is a plane tangent to all of the wavelets when a light ray crosses from one medium to another, it changes direction by an amount that depends on the index of refraction of each medium and the sines of the angle of incidence and angle of refraction
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/10%3A_Geometrical_Optics/10.S%3A_The_Nature_of_Light_(Summary)
      The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the an...The intensity, I, of polarized light after passing through a polarizing filter is \(\displaystyle I=I_0cos^2θ\), where \(\displaystyle I_0\) is the incident intensity and \(\displaystyle θ\) is the angle between the direction of polarization and the axis of the filter.

    Support Center

    How can we help?