Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/05%3A_The_Schrodinger_Equation/5.07%3A_Barrier_Penetration_and_Tunneling
      First, notice that the probability of tunneling out of the well is exactly equal to the probability of tunneling in, since all of the parameters of the barrier are exactly the same. Remember, T is now...First, notice that the probability of tunneling out of the well is exactly equal to the probability of tunneling in, since all of the parameters of the barrier are exactly the same. Remember, T is now the probability of escape per collision with a well wall, so the inverse of T must be the number of collisions needed, on average, to escape. If we can determine the number of seconds between collisions, the product of this number and the inverse of T should be the lifetime () of the state:

    Support Center

    How can we help?