Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/03%3A_Describing_Motion_in_One_Dimension/3.08%3A_Sample_Problems_and_Solutions
      \(\begin{aligned} 2a(x-x_{0})x&=(2a)v_{0}\left(\frac{v-v_{0}}{a} \right)+(2a)\frac{1}{2}a\left(\frac{v-v_{0}}{a} \right)^{2} \\ 2a(x-x_{0})&=(2v_{0})a\left(\frac{v-v_{0}}{a} \right)+a^{2}\left( \frac{...2a(xx0)x=(2a)v0(vv0a)+(2a)12a(vv0a)22a(xx0)=(2v0)a(vv0a)+a2(vv0a)22a(xx0)=2v0(vv0)+(vv0)2 So, we are interested in the value of t when xR=xV, where xR is the position of Rob, and xV is the position of the velociraptor.

    Support Center

    How can we help?