The \(y\) component of Newton’s Second Law tells us that the normal force exerted by the road must equal the weight of the car: \[\begin{aligned} \sum F_y = N-F_g&=0\\ \therefore N &=mg\end{aligned}\]...The \(y\) component of Newton’s Second Law tells us that the normal force exerted by the road must equal the weight of the car: \[\begin{aligned} \sum F_y = N-F_g&=0\\ \therefore N &=mg\end{aligned}\] The \(x\) component relates the force of friction to the radial acceleration (and thus to the speed): \[\begin{aligned} \sum F_x = f_s =ma_R&=m\frac{v^2}{R}\\ \therefore f_s &= m\frac{v^2}{R}\end{aligned}\] The force of friction must be less than or equal to \(f_s\leq\mu_sN=\mu_smg\) (since \(N=mg…