Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/10%3A_Linear_Momentum_and_the_Center_of_Mass/10.03%3A_The_center_of_mass
      To find the total mass of water, \(M\), we proceed in an analogous way, and determine the value of the sum (integral) of all of the mass elements: \[\begin{aligned} M = \int dm = \int_0^h \rho \pi a^2...To find the total mass of water, \(M\), we proceed in an analogous way, and determine the value of the sum (integral) of all of the mass elements: \[\begin{aligned} M = \int dm = \int_0^h \rho \pi a^2 z dz = \rho \pi a^2 \left[ \frac{1}{2}z^2 \right]_0^h= \frac{1}{2}\rho \pi a^2 h^2\end{aligned}\] Substituting this value for \(M\), we can determine the \(z\) coordinate of the center of mass of the full bowl: \[\begin{aligned} z_{CM} &=\frac{\rho \pi a^2}{3M}h^3 = \frac{2\rho \pi a^2}{3\rho \pi …

    Support Center

    How can we help?