Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/23%3A_Electromagnetic_Induction/23.06%3A_Maxwells_equations_and_electromagnetic_waves
      We first write out Maxwell’s equations in differential form, as we have already shown for Gauss’ Law (Section 17.4) and ’s Law (Section 22.3) \[\begin{aligned} \nabla \cdot \vec E &= \frac{\rho}{\epsi...We first write out Maxwell’s equations in differential form, as we have already shown for Gauss’ Law (Section 17.4) and ’s Law (Section 22.3) \[\begin{aligned} \nabla \cdot \vec E &= \frac{\rho}{\epsilon_0} &\text{(Gauss' Law)}\\ \nabla \cdot \vec B&= 0 &\text{(No magnetic monopoles)}\\ \nabla \times \vec B &= \mu_0 \left(\vec j + \epsilon_0\frac{\partial \vec E}{\partial t}\right) &\text{(Ampere's Law)}\\ \nabla \times \vec E &= -\frac{\partial\vec B}{\partial t} &\text{(Faraday's Law)}\\\end{…

    Support Center

    How can we help?