Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/25%3A_Vectors/25.07%3A_Sample_problems_and_solutions
      We can find the angle that this vector makes with the \(x\) axis by taking the scalar product of the displacement vector and the unit vector in the \(x\) direction (1,0,0): \[\begin{aligned} \hat x \c...We can find the angle that this vector makes with the \(x\) axis by taking the scalar product of the displacement vector and the unit vector in the \(x\) direction (1,0,0): \[\begin{aligned} \hat x \cdot \vec d = (1)(3)+(0)(3)+(0)(3) = 3\end{aligned}\] This is equal to the product of the magnitude of \(\hat x\) and \(\vec d\) multiplied by the cosine of the angle between them: \[\begin{aligned} \hat x \cdot \vec d &= ||\hat x||||\vec d||\cos\theta = (1)(\sqrt{3^2+3^2+3^2})\cos\theta= \sqrt{27}\…

    Support Center

    How can we help?