Search
- Filter Results
- Location
- Classification
- Include attachments
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_Measurements_and_Mathematics_Tools/1.09%3A_Math_Review_of_Other_Topics/1.9.20%3A_Anti_derivatives_and_integralsUsing the derivative f(x) evaluated at x0, we have: \[\begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0...Using the derivative f(x) evaluated at x0, we have: ΔF0Δx≈f(x0)(in the limitΔx→0)∴ We can then estimate the value of the function F_1=F(x_1) at the next point, x_1=x_0+\Delta x, as illustrated by the black arrow in Figure A2.3.1 \[\begin{aligned} F_1&=F(x_1)\\ &=F(x+\Delta x) \\ &\approx F_0 + \Delta F_0\\ &\approx F_0+f(x_0)\Delta x\end{aligned}…
- https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/26%3A_Calculus/26.03%3A_Anti-derivatives_and_integralsUsing the derivative f(x) evaluated at x_0, we have: \[\begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0...Using the derivative f(x) evaluated at x_0, we have: \begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0) \Delta x\end{aligned} We can then estimate the value of the function F_1=F(x_1) at the next point, x_1=x_0+\Delta x, as illustrated by the black arrow in Figure A2.3.1 \[\begin{aligned} F_1&=F(x_1)\\ &=F(x+\Delta x) \\ &\approx F_0 + \Delta F_0\\ &\approx F_0+f(x_0)\Delta x\end{aligned}…
- https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/01%3A_Introduction_to_Physics_Measurements_and_Mathematics_Tools/1.09%3A_Math_Review_of_Other_Topics/1.9.20%3A_Anti_derivatives_and_integralsUsing the derivative f(x) evaluated at x_0, we have: \[\begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0...Using the derivative f(x) evaluated at x_0, we have: \begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0) \Delta x\end{aligned} We can then estimate the value of the function F_1=F(x_1) at the next point, x_1=x_0+\Delta x, as illustrated by the black arrow in Figure A2.3.1 \[\begin{aligned} F_1&=F(x_1)\\ &=F(x+\Delta x) \\ &\approx F_0 + \Delta F_0\\ &\approx F_0+f(x_0)\Delta x\end{aligned}…