Thus, by measuring the period of a pendulum as well as its length, we can determine the value of \(g\): \[\begin{aligned} g=\frac{4\pi^{2}L}{T^{2}}\end{aligned}\] We assumed that the frequency and per...Thus, by measuring the period of a pendulum as well as its length, we can determine the value of \(g\): \[\begin{aligned} g=\frac{4\pi^{2}L}{T^{2}}\end{aligned}\] We assumed that the frequency and period of the pendulum depend on the length of the pendulum string, rather than the angle from which it was dropped. In order to minimize the uncertainty in the period, we measured the time for the pendulum to make \(20\) oscillations, and divided that time by \(20\).