Let us, therefore, describe the position of the pendulum by the angle it makes with the vertical, \(\theta\), and let \(\alpha = d^2 \theta /dt^2\) be the angular acceleration; we can then write the e...Let us, therefore, describe the position of the pendulum by the angle it makes with the vertical, \(\theta\), and let \(\alpha = d^2 \theta /dt^2\) be the angular acceleration; we can then write the equation of motion in the form \(\tau_{net} = I\alpha\), with the torques taken around the center of rotation—which is to say, the point from which the pendulum is suspended.
Let us, therefore, describe the position of the pendulum by the angle it makes with the vertical, \(\theta\), and let \(\alpha = d^2 \theta /dt^2\) be the angular acceleration; we can then write the e...Let us, therefore, describe the position of the pendulum by the angle it makes with the vertical, \(\theta\), and let \(\alpha = d^2 \theta /dt^2\) be the angular acceleration; we can then write the equation of motion in the form \(\tau_{net} = I\alpha\), with the torques taken around the center of rotation—which is to say, the point from which the pendulum is suspended.