When an ideal gas is compressed adiabatically, work is done on it and its temperature increases; in an adiabatic expansion, the gas does work and its temperature drops. Adiabatic compressions actually...When an ideal gas is compressed adiabatically, work is done on it and its temperature increases; in an adiabatic expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car, where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat with its environment.
For an adiabatic compression we have p2=p1(V1V2)γ, so after the compression, the pressure of the mixture is \[p_2 = (1.00 \times 10^5 \, N/m^2)\left(\dfrac{240 \...For an adiabatic compression we have p2=p1(V1V2)γ, so after the compression, the pressure of the mixture is p2=(1.00×105N/m2)(240×10−6m340×10−6m3)1.40=1.23×106N/m2. From the ideal gas law, the temperature of the mixture after the compression is \[\begin{align*}T_2 &= \left(\dfrac{p_2V_2}{p_1V_1}\right)T_1 \\[4pt] &= \dfrac{(1.23 \times 10^6 \, N/m^2)(40 \times 10^{-6} m^3)}{(1…