Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 5 results
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/06%3A_Direct-Current_Circuits/6.06%3A_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/07%3A_Capacitance/7.07%3A_Application_-_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
      Figure \PageIndex1: (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple ser...Figure \PageIndex1: (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/06%3A_Direct-Current_Circuits/6.06%3A_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/05%3A_Resistive_Networks/5.06%3A_RC_Circuits
      Figure \PageIndex1: (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple ser...Figure \PageIndex1: (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch.

    Support Center

    How can we help?