Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 4 results
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/08%3A_The_Magnetic_Field/8.08%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
      Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we disc...Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and the magnetic field exerts a force on the wire.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/07%3A_Sources_of_Magnetism_Magnetic_Forces_and_Fields/7.06%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
      A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what ...A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force per unit length on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis towards the +y-axis, what is the magnetic force per unit length on the wire?
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/07%3A_Magnetic_Forces_and_Fields/7.05%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
      Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we disc...Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and the magnetic field exerts a force on the wire.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/07%3A_Magnetic_Forces_and_Fields/7.05%3A_Magnetic_Force_on_a_Current-Carrying_Conductor
      Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we disc...Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and the magnetic field exerts a force on the wire.

    Support Center

    How can we help?