In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of findi...In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle around a specific location in space. Wave functions must first be normalized before using them to make predictions. The expectation value is the average value of a quantity that requires a wave function and an integration.
In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of findi...In quantum mechanics, the state of a physical system is represented by a wave function. In Born’s interpretation, the square of the particle’s wave function represents the probability density of finding the particle around a specific location in space. Wave functions must first be normalized before using them to make predictions. The expectation value is the average value of a quantity that requires a wave function and an integration.