We introduce angular momentum as the rotational equivalent of linear momentum, defined by rotational inertia and angular velocity. Angular momentum is conserved if no external torque acts on a system....We introduce angular momentum as the rotational equivalent of linear momentum, defined by rotational inertia and angular velocity. Angular momentum is conserved if no external torque acts on a system. The direction of angular momentum follows the right-hand rule. Angular impulse changes angular momentum, with torque causing this change. Applications, like figure skaters pulling arms in to spin faster, demonstrate how rotational inertia and angular velocity affect angular momentum.