Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/01%3A_Introduction_to_Physics_Measurements_and_Mathematics_Tools/1.09%3A_Math_Review_of_Other_Topics/1.9.20%3A_Anti_derivatives_and_integrals
      Using the derivative f(x) evaluated at x0, we have: \[\begin{aligned} \frac{\Delta F_0}{\Delta x} &\approx f(x_0)\;\;\;\; (\text{in the limit} \Delta x\to 0 )\\ \therefore \Delta F_0 &= f(x_0...Using the derivative f(x) evaluated at x0, we have: ΔF0Δxf(x0)(in the limitΔx0)ΔF0=f(x0)Δx We can then estimate the value of the function F1=F(x1) at the next point, x1=x0+Δx, as illustrated by the black arrow in Figure A2.3.1 \[F1=F(x1)=F(x+Δx)F0+ΔF0F0+f(x0)Δx

    Support Center

    How can we help?