Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 5 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)
      Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the i...Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of the film.
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/03%3A_Interference/3.E%3A_Interference_(Exercises)
      Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the i...Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of the film.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/12%3A_Interference/12.E%3A_Interference_(Exercises)
      Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the i...Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of the film.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/13%3A_Interference/13.E%3A_Interference_(Exercises)
      Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the i...Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of the film.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/11%3A_Physical_Optics/11.E%3A_Interference_(Exercises)
      Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the i...Determine what happens to the double-slit interference pattern if one of the slits is covered with a thin, transparent film whose thickness is λ/[2(n−1)]λ/[2(n−1)], where λλ is the wavelength of the incident light and n is the index of refraction of the film.

    Support Center

    How can we help?