\[\begin{align} & E = \bigg (\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\bigg) \frac{(hc)^2}{8mc^2} \\ \nonumber & E = \bigg ( \frac{n_x^2}{4^2} + \frac{2^2}{L_y^2}\bigg) \frac{(1240 \text{ eV nm})^2}{8...E=(n2xL2x+n2yL2y)(hc)28mc2E=(n2x42+22L2y)(1240 eV nm)28(5111000 eV)2(0.1 nm)2E=(n2x16+n2y4)37.6 eV To help calculate the total kinetic energy of the system, list the first few lowest allowed energy states: