Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 1 results
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC_%3A_Physics_213_-_Modern_Physics/05%3A_The_Schrodinger_Equation/5.05%3A_The_2D_Infinite_Square_Well
      \[\begin{align} & E = \bigg (\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\bigg) \frac{(hc)^2}{8mc^2} \\ \nonumber & E = \bigg ( \frac{n_x^2}{4^2} + \frac{2^2}{L_y^2}\bigg) \frac{(1240 \text{ eV nm})^2}{8...E=(n2xL2x+n2yL2y)(hc)28mc2E=(n2x42+22L2y)(1240 eV nm)28(5111000 eV)2(0.1 nm)2E=(n2x16+n2y4)37.6 eV To help calculate the total kinetic energy of the system, list the first few lowest allowed energy states:

    Support Center

    How can we help?