When an object rests on a nonaccelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object. On an inclined plane, the weight of the object can be resolved int...When an object rests on a nonaccelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object. On an inclined plane, the weight of the object can be resolved into components that act perpendicular and parallel to the surface of the plane. When a rope supports the weight of an object at rest, the tension in the rope is equal to the weight of the object. The force developed in a spring obeys Hooke’s law.
When an object rests on a nonaccelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object. On an inclined plane, the weight of the object can be resolved int...When an object rests on a nonaccelerating horizontal surface, the magnitude of the normal force is equal to the weight of the object. On an inclined plane, the weight of the object can be resolved into components that act perpendicular and parallel to the surface of the plane. When a rope supports the weight of an object at rest, the tension in the rope is equal to the weight of the object. The force developed in a spring obeys Hooke’s law.