Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/12%3A_Temperature_and_Kinetic_Theory/12.06%3A_The_Kinetic_Theory_of_Gases/Heat_Capacity_and_Equipartition_of_Energy
      Summary Every degree of freedom of an ideal gas contributes \(\frac{1}{2}k_BT\)  per atom or molecule to its changes in internal energy. Every degree of freedom contributes \(\frac{1}{2}R\) to its mol...Summary Every degree of freedom of an ideal gas contributes \(\frac{1}{2}k_BT\)  per atom or molecule to its changes in internal energy. Every degree of freedom contributes \(\frac{1}{2}R\) to its molar heat capacity at constant volume \(C_V\) and do not contribute if the temperature is too low to excite the minimum energy dictated by quantum mechanics. Therefore, at ordinary temperatures \(d = 3\) for monatomic gases, \(d = 5\) for diatomic gases, and \(d \approx 6\) for polyatomic gases.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/11%3A_Temperature_and_Kinetic_Theory/11.06%3A_The_Kinetic_Theory_of_Gases/Heat_Capacity_and_Equipartition_of_Energy
      Summary Every degree of freedom of an ideal gas contributes \(\frac{1}{2}k_BT\)  per atom or molecule to its changes in internal energy. Every degree of freedom contributes \(\frac{1}{2}R\) to its mol...Summary Every degree of freedom of an ideal gas contributes \(\frac{1}{2}k_BT\)  per atom or molecule to its changes in internal energy. Every degree of freedom contributes \(\frac{1}{2}R\) to its molar heat capacity at constant volume \(C_V\) and do not contribute if the temperature is too low to excite the minimum energy dictated by quantum mechanics. Therefore, at ordinary temperatures \(d = 3\) for monatomic gases, \(d = 5\) for diatomic gases, and \(d \approx 6\) for polyatomic gases.

    Support Center

    How can we help?