Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 7 results
    • https://phys.libretexts.org/Learning_Objects/Visualizations_and_Simulations/PhET_Simulations/PhET%3A_Friction
      Move the Chemistry book and observe what happens. Note that the interactive elements in this sim have simple description that can be accessed using a screen reader.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/13%3A_Temperature_and_Heat/13.13%3A_Thermodynamic_Processes
      The expansion of the gas cools the gas to a lower temperature, which makes it possible for the heat to enter from the heat bath into the system until the temperature of the gas is reset to the tempera...The expansion of the gas cools the gas to a lower temperature, which makes it possible for the heat to enter from the heat bath into the system until the temperature of the gas is reset to the temperature of the heat bath.
    • https://phys.libretexts.org/Workbench/PH_245_Textbook_V2/20%3A_The_First_Law_of_Thermodynamics/20.05%3A_Thermodynamic_Processes
      The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For...The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state. A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/13%3A_Thermodynamics/13.1%3A_The_First_Law_of_Thermodynamics/Thermodynamic_Processes
      The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For...The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state. A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/03%3A_The_First_Law_of_Thermodynamics/3.05%3A_Thermodynamic_Processes
      The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For...The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state. A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/14%3A_Thermodynamics/14.05%3A_Thermodynamic_Processes
      The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For...The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are pressure, volume, temperature, and number of molecules or moles of the gas. For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state. A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/JJC_-_PHYS_110/07%3A_PhET_Simulations/7.14%3A_PhET-_Friction
      Move the Chemistry book and observe what happens. Note that the interactive elements in this sim have simple description that can be accessed using a screen reader.

    Support Center

    How can we help?