Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 9 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.02%3A_Right_Angle_Triangle_Trigonometry
      To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (...To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (Adjacent means “next to.”) Instead of y,we will call the side most distant from the given angle the opposite side from angle t.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
      Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.08%3A_Functions/2.8.02%3A_Trigonometric_Functions
      Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or ...Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of the main identities involving these functions.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.07%3A_Math_Review_of_Other_Topics/2.7.14%3A_Trigonometric_Functions
      Let P=(x,y) be a point on the unit circle and let θ be the corresponding angle . Since the angle θ and θ+2π correspond to the same point P, the values of the trigonometric function...Let P=(x,y) be a point on the unit circle and let θ be the corresponding angle . Since the angle θ and θ+2π correspond to the same point P, the values of the trigonometric functions at θ and at θ+2π are the same.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/02%3A_Math_Review/2.11%3A_Vectors/2.11.02%3A_Right_Angle_Triangle_Trigonometry
      To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (...To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (Adjacent means “next to.”) Instead of y,we will call the side most distant from the given angle the opposite side from angle t.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/02%3A_Math_Review/2.09%3A_Vectors/2.9.02%3A_Right_Angle_Triangle_Trigonometry
      To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (...To be able to use these ratios freely, we will give the sides more general names: Instead of x,we will call the side between the given angle and the right angle the adjacent side to angle t. (Adjacent means “next to.”) Instead of y,we will call the side most distant from the given angle the opposite side from angle t.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/02%3A_Vectors_and_Math_Review_Topics/2.01%3A_Review_of_Trigonometry
      \(\begin{align} \cos (α+β) &= \cos α \cos β −\sin α \sin β \\ \cos (α−β) &= \cos α \cos β+\sin α \sin β \\ \sin (α+β) &= \sin α \cos β+\cos α \sin β \\ \sin (α−β) &= \sin α \cos β−\cos α \sin β \\ \ta...cos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ

    Support Center

    How can we help?