Search
- https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/14%3A_Diffraction/14.03%3A_Intensity_in_Single-Slit_DiffractionThe intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
- https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/04%3A_Diffraction/4.03%3A_Intensity_in_Single-Slit_DiffractionThe intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
- https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/13%3A_Diffraction/13.03%3A_Intensity_in_Single-Slit_DiffractionThe intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.
- https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/04%3A_Diffraction/4.03%3A_Intensity_in_Single-Slit_DiffractionThe intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \...The intensity pattern for diffraction due to a single slit can be calculated using phasors as \(I = I_0 \left(\frac{sin \space \beta}{\beta}\right)^2,\) where \(\beta = \frac{\phi}{2} = \frac{\pi D \space sin \space \theta}{\lambda}\), D is the slit width, λλ is the wavelength, and θθ is the angle from the central peak.