Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 7 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_I_(2211)/09%3A_Work_Power_and_Energy/9.01%3A_Work
      To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the direction of increasing length, as in Figure \PageIndex6, with the origin at the equ...To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the direction of increasing length, as in Figure \PageIndex6, with the origin at the equilibrium position x eq = 0. (Then positive x corresponds to a stretch and negative x to a compression.) With this choice of coordinates, the spring force has only an x-component, F x = −kx, and the work done when x changes from x A to x B is
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/07%3A_Work_and_Kinetic_Energy/7.02%3A_Work
      In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and dis...In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We first define the increment of work dW done by a force acting through an infinitesimal displacement as the dot product of these two vectors.  Then, we can add up the contributions for infinitesimal displacements, along a path between two po
    • https://phys.libretexts.org/Courses/Muhlenberg_College/MC%3A_Physics_121_-_General_Physics_I/08%3A_Work_and_Kinetic_Energy/8.02%3A_Work
      In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and dis...In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We first define the increment of work dW done by a force acting through an infinitesimal displacement as the dot product of these two vectors.  Then, we can add up the contributions for infinitesimal displacements, along a path between two po
    • https://phys.libretexts.org/Workbench/PH_245_Textbook_V2/04%3A_Module_3_-_Conservation_Laws/4.01%3A_Objective_3.a./4.1.01%3A_Work
      In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and dis...In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We first define the increment of work dW done by a force acting through an infinitesimal displacement as the dot product of these two vectors.  Then, we can add up the contributions for infinitesimal displacements, along a path between two po
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019v2/Book%3A_Custom_Physics_textbook_for_JJC/08%3A_Work_and_Energy/8.02%3A_Work
      In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and dis...In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We first define the increment of work dW done by a force acting through an infinitesimal displacement as the dot product of these two vectors.  Then, we can add up the contributions for infinitesimal displacements, along a path between two po
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/Physics_201_-_Fall_2019/Book%3A_Physics_(Boundless)/07%3A_Work_and_Energy/7.02%3A_Work
      In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and dis...In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points. We first define the increment of work dW done by a force acting through an infinitesimal displacement as the dot product of these two vectors.  Then, we can add up the contributions for infinitesimal displacements, along a path between two po
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/03%3A_The_Electric_Potential/3.02%3A_Work_and_Energy
      In this section, we summarize some basic principles of physics related to work and energy, including kinetic energy and potential energy.

    Support Center

    How can we help?