Skip to main content
Physics LibreTexts

7: Time-Independent Perturbation Theory

  • Page ID
    1128
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We have developed techniques by which the general energy eigenvalue problem can be reduced to a set of coupled partial differential equations involving various wavefunctions. Unfortunately, the number of such problems that yield exactly soluble equations is comparatively small. It is, therefore, necessary to develop techniques for finding approximate solutions to otherwise intractable problems. Consider the following problem, which is very common. The Hamiltonian of a system is written

    \[ H = H_0 + H_1. \label{583}\]

    Here, \(H_0\) is a simple Hamiltonian for which we know the exact eigenvalues and eigenstates. \(H_1\) introduces some interesting additional physics into the problem, but it is sufficiently complicated that when we add it to \(H_0\) we can no longer find the exact energy eigenvalues and eigenstates. However, \(H_1\) can, in some sense (which we shall specify more exactly later on), be regarded as being small compared to \(H_0\). Let us try to find approximate eigenvalues and eigenstates of the modified Hamiltonian, \(H_0+ H_1\), by performing a perturbation analysis about the eigenvalues and eigenstates of the original Hamiltonian, \(H_0\)

      Contributors

      • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

        \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

      This page titled 7: Time-Independent Perturbation Theory is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

      • Was this article helpful?