Skip to main content
Physics LibreTexts

18: Electrochemistry

  • Page ID
    5535
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a long time I have resisted writing a chapter on electrochemistry in these notes on electricity and magnetism. The reason for this, quite frankly, is that I am not a chemist, I know relatively little about the subject, and I am not really qualified to write on it. However, a set of notes on electricity and magnetism with no mention at all of this huge topic is not very satisfactory, so I should perhaps attempt a little. I shall do little, however, other than merely introduce and define some words.

    We can perhaps think of two sorts of cell with rather opposite purposes. In an electrolytic cell, we pass an electric current through a conducting liquid through two electrodes, which may be of the same or of different metals. The object may simply be to see what happens (i.e. scientific research); or it may be to deposit a metal from a salt in the electrolytic solution on to one of the electrodes, as, for example, in silver plating, or in the industrial manufacture of aluminium; or it may be to break up the electrolyte into its constituent elements, as, for example, in a classroom demonstration that water consists of two parts of hydrogen to one of oxygen. The process is called electrolysis; the Greek etymology of the word electrolysis suggests "loosening" by electricity.

    The other sort is what we commonly call a "battery", such as a flashlight battery or a car battery. In a “battery”, we have an electrolyte and two metal poles (generally of different metals, or perhaps a metal and carbon). Because of chemical reactions inside the battery, there exists a small potential difference (usually about one or two volts) across the poles, and when the "battery" is connected to an external circuit, we can extract a continuous current from the battery. Strictly, we should call it a “cell” rather than a “battery”. A “battery” is a battery of several cells in series. Usually a flashlight holds a battery of two or three cells. A car battery is genuinely a battery of several connected cells and can correctly be called a battery. Unfortunately in common parlance we often refer to a single cell as a “battery”. In order to distinguish a cell in this sense from what I have called an "electrolytic cell", I shall refer to a cell from which we hope to extract a current as an "electrical cell". I hope these opposite terms "electrolytic cell" and "electric cell" do not prove too confusing. If they do, I'd be glad of suggestions. One suggestion that I have heard is to call an electric cell a "galvanic cell". Another is a "voltaic cell".

    In an electrolytic cell, the positive electrode is called the anode, from a Greek derivation suggesting "up". The negative electrode is the cathode, from a Greek derivation suggesting "down". In the electrolyte, current is carried by positive ions and negative ions. The positive ions, which move toward the cathode, are called cations, and the negative ions, which move towards the anode, are called anions.

    Do you find it confusing that the positive electrode is the anode, but the positive ion is the cation? And that the negative electrode is the cathode, but the negative ion is the anion? If you do, you are not alone. I find them confusing. Solution: I suggest that you call the positive electrode the positive electrode; the negative electrode the negative electrode; the positive ion the positive ion; and the negative ion the negative ion. That way there is no likelihood of your being misunderstood.

    Now, when we come to electrical cells, it may be that the roles of the electrodes are reversed. What was a positive electrode in an electrolytic cell may be the negative side of an electrical cell. What are we going to call them? I suggest that, when we are talking about electrical cells we do not use the word "electrode" at all. We shall refer to the positive pole and the negative pole of an electrical cell.


    This page titled 18: Electrochemistry is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?