Skip to main content
Physics LibreTexts

2.6: Wien's Law

  • Page ID
    8014
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The wavelengths or frequencies at which these functions reach a maximum, and what these maximum values are, can be found by differentiation of these functions. They do not all come to a maximum at the same wavelength. For the four Planck functions discussed in Section 2.6 (Equations 2.6.1- 2.6.4), the wavelengths or frequencies at which the maxima occur are given by:

    For Equation 2.6.1:

    \[\lambda = W_1/T \label{2.7.1}\]

    For Equation 2.6.2:

    \[\lambda = W_2 / T \label{2.7.2}\]

    For Equation 2.6.3:

    \[\nu = W_3 T \label{2.7.3}\]

    For Equation 2.6.4:

    \[\nu = W_4 T \label{2.7.4}\]

    Any of these equations (but more usually the first one) may be referred to as Wien's law.

    The constants are

    \begin{array}{c c}
    W_n = \frac{hc}{kx_n}, & (n=1,2)
    \end{array}

    \begin{array}{c c}
    W_n = \frac{kx_n}{h}, & (n=3,4)
    \end{array}

    where the \(x_n\) are the solutions of

    \[x_n = (6-n) \left(1-e^{-x_n} \right)\]

    and have the values

    \[x_1 = 4.965114\]

    \[x_2 = 3.920690\]

    \[x_3 = 2.821439\]

    \[x_4 = 1.593624\]

    The Wien constants then have the values

    \[W_1 = 2.8978 \times 10^{-3} \ \text{m K}\]

    \[W_2 = 3.6697 \times 10^{-3} \ \text{m K}\]

    \[W_3 = 5.8790 \times 10^{10} \ \text{Hz K}^{-1}\]

    \[W_4 = 3.3206 \times 10^{10} \ \text{Hz K}^{-1}\]

    The maximum ordinates of the functions are given by

    \[M_\lambda (\text{max}) = A_1 T^5\]

    \[N_\lambda ( \text{max}) = A_2 T^4\]

    \[M_\nu (\text{max}) = A_3 T^3\]

    \[N_\nu (\text{max}) = A_4 T^2\]

    The constants \(A_n\) are given by

    \begin{array}{c c}
    A_n = \frac{2\pi k^{6-n} y_n}{h^4 c^3}, & (n=1,2) \\
    \end{array}

    \begin{array}{c c}
    A_n = \frac{2\pi k^{6-n} y_n}{h^2 c^2}, & (n=3,4) \\
    \end{array}

    where the \(y_n\) are dimensionless numbers defined by

    \[y_n = \frac{x_n^{6-n}}{e^{x_n}-1}\]

    That is,

    \[y_1 = 21.20144\]

    \[y_2 = 4.779841\]

    \[y_3 = 1.421435\]

    \[y_4 = 0.6476102\]

    The constants \(A_n\) therefore have the values

    \begin{array}{l l}
    A_1 = 1.2867 \times 10^{-5} & \text{W m}^{-2} \text{K}^{-5} \text{m}^{-1} \\
    \end{array}

    \begin{array}{l l}
    A_2 = 2.1011 \times 10^{17} & \text{ph s}^{-1} \text{m}^{-2} \text{K}^{-4} \text{m}^{-1} \\
    \end{array}

    \begin{array}{l l}
    A_3 = 5.9568 \times 10^{-19} & \text{W m}^{-2} \text{K}^{-3} \text{Hz}^{-1} \\
    \end{array}

    \begin{array}{l l}
    A_4 = 1.9657 \times 10^{4} & \text{ph s}^{-1} \text{m}^{-2} \text{K}^{-2} \text{Hz}^{-1} \\
    \end{array}


    This page titled 2.6: Wien's Law is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.