Skip to main content
Physics LibreTexts

4.3: Center of Mass

  • Page ID
    29998
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    If an inertial frame of reference \(\begin{equation}
    K^{\prime}
    \end{equation}\) is moving at constant velocity \(\begin{equation}
    \vec{V}
    \end{equation}\) relative to inertial frame K, the velocities of individual particles in the frames are related by \(\begin{equation}
    \vec{v}_{i}=\vec{v}_{i}^{\prime}+\vec{V}
    \end{equation}\), so the total momenta are related by

    \begin{equation}
    \vec{P}=\sum_{i} m_{i} \vec{v}_{i}=\sum_{i} m_{i} \vec{v}_{i}^{\prime}+\vec{V} \sum_{i} m_{i}=\vec{P}^{\prime}+M \vec{V}, \quad M=\sum_{i} m_{i}
    \end{equation}

    If we choose \(\begin{equation}
    \vec{V}=\vec{P} / M, \text { then } \vec{P}^{\prime}=\sum_{i} m_{i} \vec{v}_{i}^{\prime}=0
    \end{equation}\), the system is “at rest” in the frame \(\begin{equation}
    K^{\prime}
    \end{equation}\). Of course, the individual particles might be moving, what is at rest in \(\begin{equation}
    \overline{K^{\prime}}
    \end{equation}\) is the center of mass defined by

    \(\begin{equation}
    M \vec{R}_{\mathrm{cm}}=\sum_{i} m_{i} \vec{r}_{i}
    \end{equation}\)

    (Check this by differentiating both sides with respect to time.)

    The energy of a mechanical system in its rest frame is often called its internal energy, we’ll denote it by \(\begin{equation}
    E_{\text {int }}
    \end{equation}\) (This includes kinetic and potential energies.) The total energy of a moving system is then

    \begin{equation}
    E=\frac{1}{2} M \vec{V}^{2}+E_{\text {int }}
    \end{equation}

    (Exercise: verify this.)


    This page titled 4.3: Center of Mass is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?