Skip to main content
Physics LibreTexts

11.5: Jacobian for Time Evolution

  • Page ID
    29467
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    As we’ve established, time development is equivalent to a canonical coordinate transformation,

    \begin{equation}
    \left(p_{t}, q_{t}\right) \rightarrow\left(p_{t+\tau}, q_{t+\tau}\right) \equiv(P, Q)
    \end{equation}

    Since we already know that the number of points inside a closed volume is constant in time, Liouville’s theorem is proved if we can show that the volume enclosed by the closed surface is constant, that is, with \(\begin{equation}
    V^{\prime}
    \end{equation}\)

    denoting the volume V evolves to become, we must prove

    \begin{equation}
    \int_{V^{\prime}} d Q_{1} \ldots d Q_{s} d P_{1} \ldots d P_{s}=\int_{V} d q_{1} \ldots d q_{s} d p_{1} \ldots d p_{s} ?
    \end{equation}

    If you’re familiar with Jacobians, you know that (by definition)

    \begin{equation}
    \int d Q_{1} \ldots d Q_{s} d P_{1} \ldots d P_{s}=\int D d q_{1} \ldots d q_{s} d p_{1} \ldots d p_{s}
    \end{equation}

    where the Jacobian

    \begin{equation}
    D=\frac{\partial\left(Q_{1}, \ldots, Q_{s}, P_{1}, \ldots, P_{s}\right)}{\partial\left(q_{1}, \ldots, q_{s}, p_{1}, \ldots, p_{s}\right)}
    \end{equation}

    Liouville’s theorem is therefore proved if we can establish that D=1. If you’re not familiar with Jacobians, or need reminding, read the next section!


    This page titled 11.5: Jacobian for Time Evolution is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?