Skip to main content
Physics LibreTexts

Conservation of Mass

  • Page ID
    223
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    mass_on_spring

    f / The time for one cycle of vibration is related to the object's mass.

    bodymass

    g / Astronaut Tamara Jernigan measures her mass aboard the Space Shuttle. She is strapped into a chair attached to a spring, like the mass in figure f. (NASA)

    We intuitively feel that matter shouldn't appear or disappear out of nowhere: that the amount of matter should be a conserved quantity. If that was to happen, then it seems as though atoms would have to be created or destroyed, which doesn't happen in any physical processes that are familiar from everyday life, such as chemical reactions. On the other hand, I've already cautioned you against believing that a law of physics must be true just because it seems appealing. The laws of physics have to be found by experiment, and there seem to be experiments that are exceptions to the conservation of matter. A log weighs more than its ashes. Did some matter simply disappear when the log was burned?

    lavoisier

    d / Portrait of Monsieur Lavoisier and His Wife, by Jacques-Louis David, 1788. Lavoisier invented the concept of conservation of mass. The husband is depicted with his scientific apparatus, while in the background on the left is the portfolio belonging to Madame Lavoisier, who is thought to have been a student of David's.

    The French chemist Antoine-Laurent Lavoisier was the first scientist to realize that there were no such exceptions. Lavoisier hypothesized that when wood burns, for example, the supposed loss of weight is actually accounted for by the escaping hot gases that the flames are made of. Before Lavoisier, chemists had almost never weighed their chemicals to quantify the amount of each substance that was undergoing reactions. They also didn't completely understand that gases were just another state of matter, and hadn't tried performing reactions in sealed chambers to determine whether gases were being consumed from or released into the air. For this they had at least one practical excuse, which is that if you perform a gas-releasing reaction in a sealed chamber with no room for expansion, you get an explosion! Lavoisier invented a balance that was capable of measuring milligram masses, and figured out how to do reactions in an upside-down bowl in a basin of water, so that the gases could expand by pushing out some of the water. In one crucial experiment, Lavoisier heated a red mercury compound, which we would now describe as mercury oxide (HgO), in such a sealed chamber. A gas was produced (Lavoisier later named it “oxygen”), driving out some of the water, and the red compound was transformed into silvery liquid mercury metal. The crucial point was that the total mass of the entire apparatus was exactly the same before and after the reaction. Based on many observations of this type, Lavoisier proposed a general law of nature, that matter is always conserved.

    self-check:

    In ordinary speech, we say that you should “conserve” something, because if you don't, pretty soon it will all be gone. How is this different from the meaning of the term “conservation” in physics?

    (answer in the back of the PDF version of the book)

    Although Lavoisier was an honest and energetic public official, he was caught up in the Terror and sentenced to death in 1794. He requested a fifteen-day delay of his execution so that he could complete some experiments that he thought might be of value to the Republic. The judge, Coffinhal, infamously replied that “the state has no need of scientists.” As a scientific experiment, Lavoisier decided to try to determine how long his consciousness would continue after he was guillotined, by blinking his eyes for as long as possible. He blinked twelve times after his head was chopped off. Ironically, Judge Coffinhal was himself executed only three months later, falling victim to the same chaos.

    Example 1: A stream of water

    The stream of water is fatter near the mouth of the faucet, and skinnier lower down. This can be understood using conservation of mass. Since water is being neither created nor destroyed, the mass of the water that leaves the faucet in one second must be the same as the amount that flows past a lower point in the same time interval. The water speeds up as it falls, so the two quantities of water can only be equal if the stream is narrower at the bottom.

    faucet

    e / Example 1.

    Physicists are no different than plumbers or ballerinas in that they have a technical vocabulary that allows them to make precise distinctions. A pipe isn't just a pipe, it's a PVC pipe. A jump isn't just a jump, it's a grand jeté. We need to be more precise now about what we really mean by “the amount of matter,” which is what we're saying is conserved. Since physics is a mathematical science, definitions in physics are usually definitions of numbers, and we define these numbers operationally. An operational definition is one that spells out the steps required in order to measure that quantity. For example, one way that an electrician knows that current and voltage are two different things is that she knows she has to do completely different things in order to measure them with a meter.

    If you ask a room full of ordinary people to define what is meant by mass, they'll probably propose a bunch of different, fuzzy ideas, and speak as if they all pretty much meant the same thing: “how much space it takes up,” “how much it weighs,” “how much matter is in it.” Of these, the first two can be disposed of easily. If we were to define mass as a measure of how much space an object occupied, then mass wouldn't be conserved when we squished a piece of foam rubber. Although Lavoisier did use weight in his experiments, weight also won't quite work as the ultimate, rigorous definition, because weight is a measure of how hard gravity pulls on an object, and gravity varies in strength from place to place. Gravity is measurably weaker on the top of a mountain that at sea level, and much weaker on the moon. The reason this didn't matter to Lavoisier was that he was doing all his experiments in one location. The third proposal is better, but how exactly should we define “how much matter?” To make it into an operational definition, we could do something like figure f. A larger mass is harder to whip back and forth --- it's harder to set into motion, and harder to stop once it's started. For this reason, the vibration of the mass on the spring will take a longer time if the mass is greater. If we put two different masses on the spring, and they both take the same time to complete one oscillation, we can define them as having the same mass.

    When you learn about a new physical quantity, such as mass, you need to know what units are used to measure it. This will lead us to a brief digression on the metric system, after which we'll come back to physics.

    Contributors and Attributions

    • Benjamin Crowell, Conceptual Physics

    Conservation of Mass is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.