Skip to main content
\(\require{cancel}\)
Physics LibreTexts

14.2: Unit 8 Lab Extension- Quantitative Numerical Modeling of Falling Motion with Air Resistance*

  • Page ID
    17831
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Numerical Modeling

    Do the Unit 8 Lab Extension Activity to determine the drag coefficient of a coffee filter.

    Use a spreadsheet or your favorite coding language to build the numerical model for skydiving motion described a the end of Unit 8.

    Use the coffee filter drag coefficient you found, employ your program to model the acceleration, velocity and potion of a three nested coffee filters during a fall.

    Measure the acceleration, velocity and position experienced by the set of coffee filters during a fall.

    Graph both your measured and predicted acceleration on a single graph.

    Graph both your measured and predicted velocity on a single graph.

    Graph both your measured and predicted position on a single graph.

    Does your model do well at prediction the coffee filter motion?