$$\require{cancel}$$
Suppose that the variable $$u$$ can take on a continuous range of possible values. In general, we expect the probability that $$u$$ takes on a value in the range $$u$$ to $$u+du$$ to be directly proportional to $$du$$, in the limit that $$du\rightarrow 0$$. In other words, $P(u\in u:u+du) = P(u)\,du,$ where $$P(u)$$ is known as the probability density. The earlier results (1.2.4), (1.3.4), and (1.3.11) generalize in a straightforward manner to give: \begin{aligned} 1&= \int_{-\infty}^\infty P(u)\,du,\\[0.5ex] \langle u\rangle &= \int_{-\infty}^\infty P(u)\,u\,du,\\[0.5ex] \left\langle({\mit\Delta} u)^2\right\rangle &= \int_{-\infty}^\infty P(u)\, (u-\langle u\rangle)^2\,du = \left\langle u^{\,2}\right\rangle-\langle u\rangle^2,\end{aligned} respectively.
$$\newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}$$ $$\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}$$ $$\newcommand {\btau}{\mbox{\boldmath\tau}}$$ $$\newcommand {\bmu}{\mbox{\boldmath\mu}}$$ $$\newcommand {\bsigma}{\mbox{\boldmath\sigma}}$$ $$\newcommand {\bOmega}{\mbox{\boldmath\Omega}}$$ $$\newcommand {\bomega}{\mbox{\boldmath\omega}}$$ $$\newcommand {\bepsilon}{\mbox{\boldmath\epsilon}}$$