Skip to main content
Physics LibreTexts

11.3: Two-State System

  • Page ID
    15793
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider the simplest possible non-trivial quantum mechanical system. In such a system, there are only two independent eigenstates of the unperturbed Hamiltonian: that is,

    \[\begin{aligned} \label{e12.21} H_0\,\psi_1 &= E_1\,\psi_1,\\[0.5ex] H_0\,\psi_2&=E_2\,\psi_2.\label{e12.22}\end{aligned}\] It is assumed that these states, and their associated eigenvalues, are known. We also expect the states to be orthonormal, and to form a complete set.

    Let us now try to solve the modified energy eigenvalue problem \[\label{e12.23} (H_0+H_1)\,\psi_E = E\,\psi_E.\] We can, in fact, solve this problem exactly. Because the eigenstates of \(H_0\) form a complete set, we can write [see Equation ([e12.13a])]

    \[\label{e12.24} \psi_E = \langle 1|E\rangle\,\psi_1 + \langle 2|E\rangle\,\psi_2.\] It follows from Equation ([e12.23]) that

    \[\label{e12.25} \langle i|H_0 + H_1|E\rangle = E\,\langle i|E\rangle,\] where \(i=1\) or \(2\). Equations ([e12.21]), ([e12.22]), ([e12.24]), ([e12.25]), and the orthonormality condition \[\langle i|j\rangle = \delta_{ij},\] yield two coupled equations that can be written in matrix form:

    \[\begin{aligned} \label{e12.27} \left(\begin{array}{cc}E_1-E+e_{11},& e_{12}\\[0.5ex] e_{12}^\ast, & E_2-E+e_{22}\end{array}\right)\left( \begin{array}{c}\langle 1|E\rangle\\[0.5ex] \langle 2|E\rangle\end{array}\right)=\left( \begin{array}{c} 0\\[0.5ex] 0\end{array}\right),\end{aligned}\] where \[\begin{aligned} e_{11} &= \langle 1|H_1|1\rangle,\\[0.5ex] e_{22}&=\langle 2|H_1|2\rangle,\\[0.5ex] e_{12}&=\langle 1|H_1|2\rangle = \langle 2|H_1|1\rangle^\ast.\end{aligned}\] Here, use has been made of the fact that \(H_1\) is an Hermitian operator.

    Consider the special (but not uncommon) case of a perturbing Hamiltonian whose diagonal matrix elements are zero, so that \[e_{11}= e_{22} = 0.\] The solution of Equation ([e12.27]) (obtained by setting the determinant of the matrix to zero) is \[E = \frac{(E_1+E_2)\pm\sqrt{(E_1-E_2)^{\,2} + 4\,|e_{12}|^{\,2}}} {2}.\] Let us expand in the supposedly small parameter \[\epsilon = \frac{|e_{12}|}{|E_1-E_2|}.\] We obtain \[E \simeq \frac{1}{2}\,(E_1+E_2) \pm \frac{1}{2}\,(E_1-E_2)(1+2\,\epsilon^{\,2}+\cdots).\] The previous expression yields the modification of the energy eigenvalues due to the perturbing Hamiltonian: \[\begin{aligned} E_1' &= E_1 + \frac{|e_{12}|^{\,2}}{E_1-E_2}+ \cdots,\\[0.5ex] E_2' &= E_2 - \frac{|e_{12}|^{\,2}}{E_1-E_2}+\cdots.\end{aligned}\] Note that \(H_1\) causes the upper eigenvalue to rise, and the lower to fall. It is easily demonstrated that the modified eigenstates take the form \[\begin{aligned} \psi_1' &=\psi_1+ \frac{e_{12}^\ast}{E_1-E_2}\,\psi_2+ \cdots,\\[0.5ex] \psi_2'&= \psi_2 - \frac{e_{12}}{E_1-E_2}\,\psi_1+ \cdots.\end{aligned}\] Thus, the modified energy eigenstates consist of one of the unperturbed eigenstates, plus a slight admixture of the other. Now, our expansion procedure is only valid when \(\epsilon\ll 1\). This suggests that the condition for the validity of the perturbation method as a whole is \[|e_{12}|\ll |E_1-E_2|.\] In other words, when we say that \(H_1\) needs to be small compared to \(H_0\), what we are really saying is that the previous inequality must be satisfied.

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 11.3: Two-State System is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?