Skip to main content
Library homepage
 
Physics LibreTexts

3.1: Schrodinger's Equation

  • Page ID
    15736
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider a dynamical system consisting of a single non-relativistic particle of mass \(m\) moving along the \(x\)-axis in some real potential \(V(x)\). In quantum mechanics, the instantaneous state of the system is represented by a complex wavefunction \(\psi(x,t)\). This wavefunction evolves in time according to Schrödinger’s equation: \[\label{e3.1} {\rm i}\,\hbar\,\frac{\partial\psi}{\partial t} = -\frac{\hbar^{\,2}}{2\,m}\frac{\partial^{\,2} \psi}{\partial x^{\,2}} + V(x)\,\psi.\] The wavefunction is interpreted as follows: \(|\psi(x,t)|^{\,2}\) is the probability density of a measurement of the particle’s displacement yielding the value \(x\). Thus, the probability of a measurement of the displacement giving a result between \(a\) and \(b\) (where \(a<b\)) is \[\label{e3.2} P_{x\,\in\, a:b}(t) = \int_{a}^{b}|\psi(x,t)|^{\,2}\,dx.\] Note that this quantity is real and positive definite.


    This page titled 3.1: Schrodinger's Equation is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?