# 9.3: Eigenstates of Sz and S²

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Because the operators $$S_z$$ and $$S^2$$ commute, they must possess simultaneous eigenstates. (See Section [smeas].) Let these eigenstates take the form [see Equations ([e8.29]) and ([e8.30])]: \begin{aligned} S_z\,\chi_{s,m_s}&= m_s\,\hbar\,\chi_{s,m_s},\label{e10.16}\\[0.5ex] S^2\,\chi_{s,m_s} &= s\,(s+1)\,\hbar^{\,2}\,\chi_{s,m_s}.\label{e10.17}\end{aligned}

Now, it is easily demonstrated, from the commutation relations ([e10.9]) and ([e10.10]), that $S_z\,(S_+\,\chi_{s,m_s}) = (m_s+1)\,\hbar\,(S_+\,\chi_{s,m_s}),$ and $S_z\,(S_-\,\chi_{s,m_s}) = (m_s-1)\,\hbar\,(S_-\,\chi_{s,m_s}).$ Thus, $$S_+$$ and $$S_-$$ are indeed the raising and lowering operators, respectively, for spin angular momentum. (See Section [seian].) The eigenstates of $$S_z$$ and $$S^2$$ are assumed to be orthonormal: that is, $\label{e10.20} \chi^\dagger_{s,m_s}\,\chi_{s',m_s'} =\delta_{ss'}\,\delta_{m_s m_s'}.$

Consider the wavefunction $$\chi=S_+\,\chi_{s,m_s}$$. Because we know, from Equation ([e10.11]), that $$\chi^\dagger\,\chi\geq 0$$, it follows that $(S_+\,\chi_{s,m_s})^\dagger\,(S_+\,\chi_{s,m_s}) = \chi_{s,m_s}^\dagger\, S_+^\dagger\,S_+\,\chi_{s,m_s} = \chi_{s,m_s}^\dagger\,S_-\,S_+\,\chi_{s,m_s}\geq 0,$ where use has been made of Equation ([e10.7]). Equations ([e10.8]), ([e10.16]), ([e10.17]), and ([e10.20]) yield $s\,(s+1) \geq m_s\,(m_s+1).$ Likewise, if $$\chi=S_-\,\chi_{s,m_s}$$ then we obtain $s\,(s+1)\geq m_s\,(m_s-1).$ Assuming that $$s\geq 0$$, the previous two inequalities imply that $-s \leq m_s\leq s.$ Hence, at fixed $$s$$, there is both a maximum and a minimum possible value that $$m_s$$ can take.

Let $$m_{s\,{\rm min}}$$ be the minimum possible value of $$m_s$$. It follows that (see Section [slsq]) $S_-\,\chi_{s,m_{s\,{\rm min}}}= 0.$ Now, from Equation ([e10.7a]), $S^2 = S_+\,S_-+S_z^{\,2}-\hbar\,S_z.$ Hence, $S^2\,\chi_{s,m_{s\,{\rm min}}} = (S_+\,S_- +S_z^{\,2}-\hbar\,S_z)\,\chi_{s,m_{s\,{\rm min}}},$ giving $s\,(s+1) = m_{s\,{\rm min}}\,(m_{s\,{\rm min}}-1).$ Assuming that $$m_{s\,{\rm min}}<0$$, this equation yields $m_{s\,{\rm min}} = -s.$ Likewise, it is easily demonstrated that $m_{s\,{\rm max}} = +s.$ Moreover,

$\label{e10.31} S_-\,\chi_{s,-s} = S_+\,\chi_{s,s} = 0.$

Now, the raising operator $$S_+$$, acting upon $$\chi_{s,-s}$$, converts it into some multiple of $$\chi_{s,-s+1}$$. Employing the raising operator a second time, we obtain a multiple of $$\chi_{s,-s+2}$$. However, this process cannot continue indefinitely, because there is a maximum possible value of $$m_s$$. Indeed, after acting upon $$\chi_{s,-s}$$ a sufficient number of times with the raising operator $$S_+$$, we must obtain a multiple of $$\chi_{s,s}$$, so that employing the raising operator one more time leads to the null state. [See Equation ([e10.31]).] If this is not the case then we will inevitably obtain eigenstates of $$S_z$$ corresponding to $$m_s>s$$, which we have already demonstrated is impossible.

It follows, from the previous argument, that $m_{s\,{\rm max}}-m_{s\,{\rm min}} = 2\,s = k,$ where $$k$$ is a positive integer. Hence, the quantum number $$s$$ can either take positive integer or positive half-integer values. Up to now, our analysis has been very similar to that which we used earlier to investigate orbital angular momentum. (See Section [sorb].) Recall, that for orbital angular momentum the quantum number $$m$$, which is analogous to $$m_s$$, is restricted to take integer values. (See Section [slz].) This implies that the quantum number $$l$$, which is analogous to $$s$$, is also restricted to take integer values. However, the origin of these restrictions is the representation of the orbital angular momentum operators as differential operators in real space. (See Section [s8.3].) There is no equivalent representation of the corresponding spin angular momentum operators. Hence, we conclude that there is no reason why the quantum number $$s$$ cannot take half-integer, as well as integer, values.

In 1940, Wolfgang Pauli proved the so-called spin-statistics theorem using relativistic quantum mechanics . According to this theorem, all fermions possess half-integer spin (i.e., a half-integer value of $$s$$), whereas all bosons possess integer spin (i.e., an integer value of $$s$$). In fact, all presently known fermions, including electrons and protons, possess spin one-half. In other words, electrons and protons are characterized by $$s=1/2$$ and $$m_s=\pm 1/2$$.

$$\newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}$$ $$\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}$$ $$\newcommand {\btau}{\mbox{\boldmath\tau}}$$ $$\newcommand {\bmu}{\mbox{\boldmath\mu}}$$ $$\newcommand {\bsigma}{\mbox{\boldmath\sigma}}$$ $$\newcommand {\bOmega}{\mbox{\boldmath\Omega}}$$ $$\newcommand {\bomega}{\mbox{\boldmath\omega}}$$ $$\newcommand {\bepsilon}{\mbox{\boldmath\epsilon}}$$