Skip to main content
\(\require{cancel}\)
Physics LibreTexts

10: Addition of Angular Momentum

  • Page ID
    15791
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Consider an electron in a hydrogen atom. As we have already seen, the electron’s motion through space is parameterized by the three quantum numbers \(n\), \(l\), and \(m\). (See Section [s10.4].) To these we must now add the two quantum numbers \(s\) and \(m_s\) that parameterize the electron’s internal motion. (See the previous chapter.) Now, the quantum numbers \(l\) and \(m\) specify the electron’s orbital angular momentum vector, \({\bf L}\), (as much as it can be specified) whereas the quantum numbers \(s\) and \(m_s\) specify its spin angular momentum vector, \({\bf S}\). But, if the electron possesses both orbital and spin angular momentum then what is its total angular momentum?


    10: Addition of Angular Momentum is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?