Skip to main content
Physics LibreTexts

Selected Physical Constants

  • Page ID
    89965
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Physical Constant Value
    Speed of light in a vacuum \(\begin{array}{l}
    c=2.99792458 \times\left\{\begin{array}{l}
    10 \text { meters/second } \\
    10^{10} \text { centimeters/second }
    \end{array}\right \\ \\
    c=\left\{\begin{array}{l}
    1 \text { meter of distance/meter of light-travel time } \\
    1 \text { centimeter of distance/centimeter of light-travel time }
    \end{array}\right.
    \end{array}\)
    Gravitational constant \(G=6.673 \times\left\{\begin{array}{l}10)^{-11} \text { meter }^5 /\left(\text { kilogram-second }^{\prime}\right) \\10^{-8} \text { centimeter } /(\text { gram-second }\end{array}\right.\)
    Planck constant \(h=6.6261 \times\left\{\begin{array}{ll}10^{-11} & \text { kilogram-meter }{ }^2 / \text { second }^2 \\ 10^{-27} & \text { gram-centimeter } / \text { second }^2\end{array}\right.\)
    Boltzmann constant \(k=1.38066 \times\left\{\begin{array}{l}10^{-14} \text { joule/degree Kelvin } \\ 10^{-16} \mathrm{erg} / \text { degree Kelvin }\end{array}\right.\)
    Elementary charge \(e=\left\{\begin{array}{l}1.60218 \times 10^{-19} \text { coulombs } \\
    4.80321 \times 10^{-10} \text { esu or }\left(\text { gram centimeter } / \text { second }^2\right)^{1 / 2}\end{array}\right.\)
    Electron mass \(m_i=9.1094 \times\left\{\begin{array}{l}10^{-31} \text { kilogram } \\ 10^{-2 \mathrm{H}} \text { gram }\end{array}\right.\)
    Electron rest energy \(\begin{aligned} m_c c^2 & =8.1871 \times\left\{\begin{array}{l}10^{-11} \text { joules } \\ 10^{-7} \text { ergs }\end{array}\right. \\ & =0.510999 \mathrm{MeV}\end{aligned}\)
    Proton mass \(m_p=1.67262 \times\left\{\begin{array}{l}10^{-27} \text { kilogram } \\ 10^{-21} \text { gram }\end{array}\right.\)
    Proton rest energy \(\begin{aligned}m_p c^2 & =1.503279 \times\left\{\begin{array}{l}10^{-10} \text { joules } \\10^{-3} \mathrm{ergs}\end{array}\right. \\& =938.272 \mathrm{MeV}\end{aligned}\)
    Mass of Earth \(M_{\oplus}=5.9742 \times\left\{\begin{array}{l}10^{21} \text { kilograms } \\ 10^{27} \text { grams }\end{array}\right.\)
    Radius of a sphere having the same volume as Earth \(R_{\oplus}=6.3710 \times\left\{\begin{array}{l}10^6 \text { meters } \\ 10^s \text { centimeters }\end{array}\right.\)
    Mean distance of Earth from Sun = "astronomical unit" \(AU=1.495978 \times\left\{\begin{array}{l}10^{11} \text { meters } \\ 10^{13} \text { centimeters }\end{array}\right.\)
    Mean speed of Earth in its orbit about Sun \( v=29.78 \text { kilometers/second }\)
    Mean distance of Moon from Earth \( 3.844 \times\left\{\begin{array}{l} 10^* \text { meters } \\ 10^{10} \text { centimeters }\end{array} \right.\)
    Mass of Sun \(M_{\odot}=1.989 \times\left\{\begin{array}{l}10^{30} \text { kilograms } \\ 10^{53} \text { grams }\end{array}\right.\)
    Mean radius of Sun \(R_0=6.9599 \times\left\{\begin{array}{l}10^k \text { meters } \\ 10^{10} \text { centimeters }\end{array}\right.\)

    Conversion Factors

    From To
    1 second \(=2.99792458 \times\left\{\begin{array}{l}10^8 \text { meters } \\ 10^{10} \text { centimeters }\end{array}\right\}\) of light-travel time
    1 meter of light time travel \(=3.335641 \times 10^{-9}\) second
    1 centimeter of light time travel \(=3.335641 \times 10^{-11}\) second
    1 year \(=3.156 \times 10^7\) seconds \(=9.460 \times\left\{\begin{array}{l}10^{15} \text { meters } \\ 10^{17} \text { centimeters }\end{array}\right\}\) of light-travel time
    1 kilometer \(=0.6214\) mile
    1 electron-volt \(=1.602 \times 10^{-19}\) joule \(=1.602 \times 10^{-12} \mathrm{erg}\)
    • Was this article helpful?