$$\require{cancel}$$

# 2.3: Implicit Differentiation

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Equation 2.2.5 can be used to solve the problem of differentiation of an implicit function. Consider, for example, the unlikely equation

$\ln ( xy) = x^2 y^3 \label{2.3.1}$

Calculate the derivative dy/dx. It would be easy if only one could write this in the form y = something; but it is difficult (impossible as far as I know) to write y explicitly as a function of $$x$$. Equation \ref{2.3.1} implicitly relates $$y$$ to $$x$$. How are we going to calculate $$dy/dx$$?

The curve $$f(x, y) = 0$$ might be considered as being the intersection of the surface $$z = f (x , y)$$ with the plane $$z = 0$$. Seen thus, the derivative $$dy/dx$$ can be thought of as the limit as $$δx$$ and $$δy$$ approach zero of the ratio $$δy/δx$$ within the plane $$z = 0$$; that is, keeping z constant and hence $$δz$$ equal to zero. Thus equation 2.2.5 gives us that

$\frac{dy}{dx} = - \left( \frac{\partial f}{\partial x} \right) / \left( \frac{\partial f}{\partial y} \right).$

For example, show that, for Rquation \ref{2.3.1},

$\frac{dy}{dx} = \frac{y(2x^2y^3-1)}{x(1-3x^2y^3)}.$

2.3: Implicit Differentiation is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.