Skip to main content
Physics LibreTexts

2.3: Implicit Differentiation

  • Page ID
    7216
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Equation 2.2.5 can be used to solve the problem of differentiation of an implicit function. Consider, for example, the unlikely equation

    \[ \ln ( xy) = x^2 y^3 \label{2.3.1}\]

    Calculate the derivative dy/dx. It would be easy if only one could write this in the form y = something; but it is difficult (impossible as far as I know) to write y explicitly as a function of \(x\). Equation \ref{2.3.1} implicitly relates \(y\) to \(x\). How are we going to calculate \(dy/dx\)?

    The curve \(f(x, y) = 0\) might be considered as being the intersection of the surface \(z = f (x , y)\) with the plane \(z = 0\). Seen thus, the derivative \(dy/dx\) can be thought of as the limit as \(δx\) and \(δy\) approach zero of the ratio \(δy/δx\) within the plane \(z = 0\); that is, keeping z constant and hence \(δz\) equal to zero. Thus equation 2.2.5 gives us that

    \[ \frac{dy}{dx} = - \left( \frac{\partial f}{\partial x} \right) / \left( \frac{\partial f}{\partial y} \right).\]

    For example, show that, for Rquation \ref{2.3.1},

    \[ \frac{dy}{dx} = \frac{y(2x^2y^3-1)}{x(1-3x^2y^3)}.\]


    This page titled 2.3: Implicit Differentiation is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?