Skip to main content
Physics LibreTexts

2.6: Euler's Theorem for Homogeneous Functions

  • Page ID
    7219
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    There is a theorem, usually credited to Euler, concerning homogenous functions that we might be making use of.

    A homogenous function of degree n of the variables x, y, z is a function in which all terms are of degree n. For example, the function \( f(x,~y,~z) = Ax^3 +By^3+Cz^3+Dxy^2+Exz^2+Gyx^2+Hzx^2+Izy^2+Jxyz\) is a homogenous function of x, y, z, in which all terms are of degree three.

    The reader will find it easy to evaluate the partial derivatives \( \frac{\partial f}{\partial x},~ \frac{\partial f}{\partial x},~ \frac{\partial f}{\partial x}\) and equally easy (if slightly tedious) to evaluate the expression \( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z}\). Tedious or not, I do urge the reader to do it. You should find that the answer is \( 3Ax^3 +3By^3+3Cz^3 + 3Dxy^2+3Exz^2+3Fyz^2+3Gyx^2+3Hzx^2+3Izy^2+3Jxyz.\)

    In other words, \( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} = 3f\). If you do the same thing with a homogenous function of degree 2, you will find that \( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} = 2f\). And if you do it with a homogenous function of degree 1, such as \(Ax + By+Cz\), you will find that \( x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} = f\). In general, for a homogenous function of x, y, z... of degree n, it is always the case that

    \[ x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} + ... = nf.\]

    This is Euler's theorem for homogenous functions.


    This page titled 2.6: Euler's Theorem for Homogeneous Functions is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?