Skip to main content
Physics LibreTexts

4.7: The Grand Canonical Ensemble

  • Page ID
    18898
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Grand as in the French “big” rather than as in the English “magnificent”. This ensemble is “bigger” than the canonical ensemble in that there are more possible microstates.

    Summary

    The grand canonical ensemble for a pure classical monatomic fluid:

    The probability that the system has N particles and is in the microstate ΓN is proportional to

    \[ e^{-\beta\left(H\left(\Gamma_{N}\right)-\mu N\right)},\]

    where

    \[ \beta=\frac{1}{k_{B} T}.\]

    Writing out all the normalizations correctly gives: the probability that the system has N particles and is in some microstate within the phase space volume element dΓN about ΓN is

    \[ \frac{e^{-\beta\left(H\left(\Gamma_{N}\right)-\mu N\right)}}{N ! h_{0}^{3 N} \Xi(\beta, V, \mu)} d \Gamma_{N},\]

    where the "grand canonical partition function" is

    \[ \Xi(\beta, V, \mu)=\sum_{N=0}^{\infty} \frac{1}{N ! h_{0}^{3 N}} \int e^{-\beta\left(H\left(\Gamma_{N}\right)-\mu N\right)} d \Gamma_{N}\]

    \[ =\sum_{N=0}^{\infty} e^{\beta \mu N} Z(\beta, V, N).\]

    This sum is expected to converge when µ is negative.

    The connection to thermodynamics is that

    \[ \Pi(T, V, \mu)=-p(T, \mu) V=-k_{B} T \ln \Xi(T, V, \mu).\]


    4.7: The Grand Canonical Ensemble is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?