Skip to main content
\(\require{cancel}\)
Physics LibreTexts

4.9: Summary of Major Ensembles

  • Page ID
    18900
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    boundary variables probability of microstate p.f. master function
    microcanonical adiabatic (no-skid) E, V, N \( \frac{d \Gamma}{N ! h_{0}^{3 N}} \frac{1}{\Omega} \text { or } 0\) S(E, V, N) = kB ln Ω
    canonical heat bath T, V, N \( \frac{d \Gamma e^{-\beta H(\Gamma)}}{N ! h_{0}^{3 N}} \frac{1}{Z}\) Z F(T, V, N) = −kBT lnZ
    grand canonical heat bath, with holes T, V,

    μ

    \( \frac{d \Gamma_{N} e^{-\beta H\left(\Gamma_{N}\right)-\alpha N}}{N ! h_{0}^{3 N}} \frac{1}{\Xi}\) Ξ Π(T, V, µ) = −kBT ln Ξ

    In all cases, the partition function (p.f. in the above table) is the normalization factor

    \[\mathrm{p.f.}=\sum_{\text { microstates }} \text { unnormalized probability. }\]


    4.9: Summary of Major Ensembles is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?