Skip to main content

# 10.3: C- Clinic on the Gamma Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The gamma function Γ(s) is defined, for s > 0, by

$\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x.$

Upon seeing any integral, your first thought is to evaluate it. Stay calm. . . first make sure that the integral exists. A quick check shows that the integral above converges when s > 0.

There is no simple formula for the gamma function for arbitrary s. But for s = 1,

$\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=1.$

For s > 1 we may integrate by parts,

$\int_{0}^{\infty} x^{s-1} e^{-x} d x=-x^{s-1}\left.e^{-x}\right|_{0} ^{\infty}+(s-1) \int_{0}^{\infty} x^{s-2} e^{-x} d x,$

giving

$\Gamma(s)=(s-1) \Gamma(s-1) \quad \text { for } s>1.$

Apply equation (C.4) repeatedly for n a positive integer,

$\Gamma(n)=(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=(n-1)(n-2) \cdots 2 \cdot 1 \cdot \Gamma(1)=(n-1) !,$

to find a relation between the gamma function and the factorial function. Thus the gamma function generalizes the factorial function to non-integer values, and can be used to define the factorial function through

$x !=\Gamma(x+1) \quad \text { for any } x>-1.$

In particular,

$0 !=\Gamma(1)=1.$

(It is a deep and non-obvious result that the gamma function is in fact the simplest generalization of the factorial function.)

The gamma function can be simplified for half-integral arguments. For example

$\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} x^{-1 / 2} e^{-x} d x=\int_{0}^{\infty} y^{-1} e^{-y^{2}}(2 y d y)=\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi}$

where we used the substitution $$y=\sqrt{x}$$. Thus

$\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}=\left(\frac{1}{2}\right) !,$

$\Gamma\left(\frac{5}{2}\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{4} \sqrt{\pi},$

and so forth.

This page titled 10.3: C- Clinic on the Gamma Function is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.

• Was this article helpful?