$$\require{cancel}$$

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them.
• ## 1: The Nature of Light

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of light when it interacts with optical devices such as mirrors, lenses, and apertures.
• ## 2: Geometric Optics and Image Formation

This chapter introduces the major ideas of geometric optics, which describe the formation of images due to reflection and refraction.
• ## 3: Interference

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and, in fact, all types of waves.
• ## 4: Diffraction

In the preceding chapter, we implicitly regarded slits as objects with positions but no size. The widths of the slits were considered negligible. When the slits have finite widths, each point along the opening can be considered a point source of light—a foundation of Huygens’s principle. Because real-world optical instruments must have finite apertures (otherwise, no light can enter), diffraction plays a major role in the way we interpret the output of these optical instruments.
• ## 5: Relativity

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense” rules that we use to relate space and time measurements in the Newtonian worldview differ seriously from the correct rules at speeds near the speed of light. Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify how the electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon.
• ## 6: Photons and Matter Waves

In this chapter, you will learn about the energy quantum, a concept that was introduced in 1900 by the German physicist Max Planck to explain blackbody radiation. We discuss how Albert Einstein extended Planck’s concept to a quantum of light (a “photon”) to explain the photoelectric effect. We also show how American physicist Arthur H. Compton used the photon concept in 1923 to explain wavelength shifts observed in X-rays.
• ## 7: Quantum Mechanics

Quantum mechanics is a powerful framework for understanding the motions and interactions of particles at small scales, such as atoms and molecules. The ideas behind quantum mechanics often appear quite strange. In many ways, our everyday experience with the macroscopic physical world does not prepare us for the microscopic world of quantum mechanics. The purpose of this chapter is to introduce you to this exciting world.
• ## 8: Atomic Structure

In this chapter, we use quantum mechanics to study the structure and properties of atoms. This study introduces ideas and concepts that are necessary to understand more complex systems, such as molecules, crystals, and metals. As we deepen our understanding of atoms, we build on things we already know, such as Rutherford’s nuclear model of the atom, Bohr’s model of the hydrogen atom, and de Broglie’s wave hypothesis.
• ## 9: Condensed Matter Physics

In this chapter, we examine applications of quantum mechanics to more complex systems, such as molecules, metals, semiconductors, and superconductors. We review and develop concepts of the previous chapters, including wave functions, orbitals, and quantum states. We also introduce many new concepts, including covalent bonding, rotational energy levels, Fermi energy, energy bands, doping, and Cooper pairs.
• ## 10: Nuclear Physics

In this chapter, we study the composition and properties of the atomic nucleus. The nucleus lies at the center of an atom, and consists of protons and neutrons. A deep understanding of the nucleus leads to numerous valuable technologies, including devices to date ancient rocks, map the galactic arms of the Milky Way, and generate electrical power.
• ## 11: Particle Physics and Cosmology

At the very beginning of this text we discussed the wide range of scales that physics encompasses, from the very smallest particles to the largest scale possible—the universe itself. In this final chapter we examine some of the frontiers of research at these extreme scales. Particle physics deals with the most basic building blocks of matter and the forces that hold them together.