Skip to main content
Physics LibreTexts

Topologically Massive Gravity

  • Page ID
    1294
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    As noted above, quantum gravity in three spacetime dimensions has no propagating degrees of freedom. This makes it a powerful model for exploring some kinds of conceptual issues, but many other important questions can't be addressed.

    One step more complicated is a model called "topologically massive gravity," proposed by Deser, Jackiw, and Templeton in 1982. This model modifies the field equations of general relativity by adding a new term with three derivatives. This is normally a dangerous thing to do -- "higher derivative" theories in physics usually have negative energies and no stable solutions -- but in this special case it is consistent. In a different context, the extra term is "topological", that is, it depends only on the topology of spacetime and not the particular geometry; hence the somewhat confusing name.

    The addition of a higher-derivative term in the field equations changes the counting of degrees of freedom of a theory. For topologically massive gravity, the effect is to add a new, propagating degree of freedom, a sort of massive gravitational wave, or, in the quantum theory, a massive graviton. Recently, the model has been a subject of renewed attention because of its interesting properties in anti-de Sitter space, where it has become a testing ground for the AdS/CFT correspondence of string theory.

    Contributors and Attributions


    Topologically Massive Gravity is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.