Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

4.5: Ehrenfest's Theorem

( \newcommand{\kernel}{\mathrm{null}\,}\)

A simple way to calculate the expectation value of momentum is to evaluate the time derivative of x, and then multiply by the mass m i.e.

p=mdxdt=mddtx|ψ|2dx=mx|ψ|2tdx

 

However, it is easily demonstrated that
|ψ|2t+jx=0

[this is just the differential form of Eq. (154)], where j is the probability current defined in Eq. (155). Thus,

p=mxjxdx=mjdx

 

where we have integrated by parts. It follows from Eq. (155) that
p=i2(ψψxψxψ)dx=iψψxdx

 

where we have again integrated by parts. Hence, the expectation value of the momentum can be written
p=mdxdt=iψψxdx

It follows from the above that

dpdt=i(ψtψx+ψ2ψtx)dx=[(iψt)ψx+ψx(iψt)]dx

 

where we have integrated by parts. Substituting from Schrödinger's equation (137), and simplifying, we obtain
dpdt=[22mx(ψxψx)+V(x)|ψ|2x]dx=V(x)|ψ|2xdx

 

Integration by parts yields
dpdt=dVdx|ψ|2dx=dVdx

Hence, according to Eqs. (170) and (177),

mdxdt=pdpdt=dVdx

Evidently, the expectation values of displacement and momentum obey time evolution equations which are analogous to those of classical mechanics. This result is known as Ehrenfest's theorem.

Suppose that the potential V(x) is slowly varying. In this case, we can expand dV/dx as a Taylor series about x. Keeping terms up to second order, we obtain

dV(x)dx=dV(x)dx+dV2(x)dx2(xx)+12dV3(x)dx3(xx)2

 

Substitution of the above expansion into Eq. (179) yields
dpdt=dV(x)dxσ2x2dV3(x)dx3

since 1=1, and xx=0, and (xx)2=σ2x.  The final term on the right-hand side of the above equation can be neglected when the spatial extent of the particle wavefunction, σx, is much smaller than the variation length-scale of the potential. In this case, Eqs. (178) and (179) reduce to

mdxdt=pdpdt=dV(x)dx

These equations are exactly equivalent to the equations of classical mechanics, with x playing the role of the particle displacement. Of course, if the spatial extent of the wavefunction is negligible then a measurement of $x$ is almost certain to yield a result which lies very close to x. Hence, we conclude that quantum mechanics corresponds to classical mechanics in the limit that the spatial extent of the wavefunction (which is typically of order the de Boglie wavelength) is negligible. This is an important result, since we know that classical mechanics gives the correct answer in this limit.

 


This page titled 4.5: Ehrenfest's Theorem is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

  • Was this article helpful?

Support Center

How can we help?