Skip to main content
Physics LibreTexts

5.8: Spin Greater Than One-Half Systems

  • Page ID
    1211
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In the absence of spin, the Hamiltonian can be written as some function of the position and momentum operators. Using the Schrödinger representation, in which \({\bf p} \rightarrow -{\rm i}\,\hbar\,\nabla\), the energy eigenvalue problem,

    \[H\,\vert E\rangle = E\,\vert E\rangle, \label{520}\]

    can be transformed into a partial differential equation for the wavefunction \( {\bf x}'\) . In general, we find

    \( H\) is now a partial differential operator. The boundary conditions (for a bound state) are obtained from the normalization constraint \( \psi_+({\bf x'})\), specifies the probability density of observing the particle at position \( {\bf x}'\) with spin angular momentum \( z\) -direction. The second, \( {\bf x}'\) with spin angular momentum \( z\) -direction. In the Pauli scheme, these wavefunctions are combined into a spinor, \( \psi_+\) and \( H \,\chi = E \,\chi,\) \ref{523}

    where \( 2\times 1\) matrix of wavefunctions) and \( H\) is a \( \psi_+\) and \( 2\times 2\) matrix partial differential operator in the Schrödinger/Pauli scheme [see Equation \ref{506}]. In other words, the partial differential equation for \( \psi_-\) . In fact, both equations have the same form, so there is only really one differential equation. In this situation, the most general solution to Equation \ref{523} can be written

    \( \psi({\bf x}')\) is determined by the solution of the differential equation, and the \( 2\times 2\) matrix of complex numbers in the Schrödinger/Pauli scheme [see Equation \ref{489}], and the spinor eigenvalue equation \ref{523} reduces to a straightforward matrix eigenvalue problem. The most general solution can again be written \( c_+/c_-\) is determined by the matrix eigenvalue problem, and the wavefunction \( \psi_+\) and \( s\) particle: i.e., a particle for which the eigenvalue of \( s\,(s+1)\,\hbar^2\) . Here, \( S_z\) are written \( s_z\) is allowed to take the values \( 2\,s+1\) distinct allowed values of \( 2\,s+1\) different wavefunctions, denoted $ \psi_{s_z}
({\bf x}')$ . Here, $ \psi_{s_z}
({\bf x}')$ specifies the probability density for observing the particle at position \( {\bf x'}\) with spin angular momentum \( z\) -direction. More exactly, \( \vert\vert A\rangle\rangle\) denotes a state ket in the product space of the position and spin operators. The state of the particle can be represented more succinctly by a spinor, \( 2\,s+1\) component column vector of the $ \psi_{s_z}
({\bf x}')$ . Thus, a spin one-half particle is represented by a two-component spinor, a spin one particle by a three-component spinor, a spin three-halves particle by a four-component spinor, and so on.

    In this extended Schrödinger/Pauli scheme, position space operators take the form of diagonal \( p_k \rightarrow -{\rm i}\,\hbar \,\frac{\partial}{\partial x_k'}\, {\bf 1},\)

    \ref{527}

    where \( {\bf 1}\) is the \( S_k \rightarrow s\,\hbar \,\sigma_k,\)

    \ref{528}

    where the \( \sigma_k\) has elements

    \( j, l\) are integers, or half-integers, lying in the range \( +s\) . But, how can we evaluate the brackets \( \sigma_z\) matrix. By definition, \( (\sigma_3)_{j\,l} = \frac{\langle s, j\vert\,S_z\, \vert s, l\rangle}{s\,\hbar} = \frac{j}{s}\, \delta_{j\,l},\) \ref{531}

    where use has been made of the orthonormality property of the \( \sigma_z\) is the suitably normalized diagonal matrix of the eigenvalues of \( \sigma_x\) and \( S^\pm = S_x \pm {\rm i}\, S_y.\)

    \ref{532}

    We know, from Equations \ref{344}-\ref{345}, that

    \( = [s\,(s+1) - j \,(j+1)]^{1/2} \,\hbar\, \vert s, j+1\rangle,\) \ref{533} \( = [s\,(s+1) - j \,(j-1)]^{1/2}\, \hbar \,\vert s, j-1\rangle.\) \ref{534}

    It follows from Equations \ref{529}, and \ref{532}-\ref{534}, that

    \( = \frac{[s\,(s+1) - j\,(j-1)]^{1/2} }{2\,s}\,\delta_{j\,\, l+1}+ \frac{[s\,(s+1) - j\,(j+1)]^{1/2} }{2\,s}\,\delta_{j\,\, l-1},\) \ref{535} \( = \frac{[ s\,(s+1) - j\,(j-1)]^{1/2} }{2\,{\rm i}\,s}\,\delta_{j\,\, l+1}- \frac{[s\,(s+1) - j\,(j+1)]^{1/2} }{2\,{\rm i}\,s}\,\delta_{j\,\, l-1}.\) \ref{536}

    According to Equations \ref{531} and \ref{535}-\ref{536}, the Pauli matrices for a spin one-half (\( \sigma_1\)

    \( \sigma_2\) \( \sigma_3\) \( s=1\) ) particle, we find that \( =\frac{1}{\sqrt{2}}\left(\! \begin{array}{rrr} 0 &1&0\\ 1&0&1\\ 0&1&0\end{array}\!\right),\) \ref{540} \( = \frac{1}{\sqrt{2}} \left(\!\begin{array}{rrr} 0 &-{\rm i}&0\\ {\rm i}&0&{-\rm i}\\ 0&{\rm i}& 0\end{array}\!\right),\) \ref{541} \( = \left(\!\begin{array}{rrr} 1 &0&0\\ 0&0&0\\ 0&0&-1\end{array}\!\right).\) \ref{542}

    In fact, we can now construct the Pauli matrices for a spin anything particle. This means that we can convert the general energy eigenvalue problem for a spin-\( 2\,s+1\) coupled partial differential equations involving the \( \psi_{s_z}({\bf x'})\) . Unfortunately, such a system of equations is generally too complicated to solve exactly.

    Contributors

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 5.8: Spin Greater Than One-Half Systems is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?