Loading [MathJax]/jax/input/MathML/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 5 results
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.03%3A_RLC_Series_AC_Circuits
      But we know from the preceding section that the voltage across the inductor \(V_L\) leads the current by one-fourth of a cycle, the voltage across the capacitor \(V_C\) follows the current by one-four...But we know from the preceding section that the voltage across the inductor \(V_L\) leads the current by one-fourth of a cycle, the voltage across the capacitor \(V_C\) follows the current by one-fourth of a cycle, and the voltage across the resistor \(V_R\) is exactly in phase with the current.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/08%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/8.04%3A_RLC_Series_AC_Circuits
      But we know from the preceding section that the voltage across the inductor \(V_L\) leads the current by one-fourth of a cycle, the voltage across the capacitor \(V_C\) follows the current by one-four...But we know from the preceding section that the voltage across the inductor \(V_L\) leads the current by one-fourth of a cycle, the voltage across the capacitor \(V_C\) follows the current by one-fourth of a cycle, and the voltage across the resistor \(V_R\) is exactly in phase with the current.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/15%3A_Alternating-Current_Circuits/15.06%3A_Resonance_in_an_AC_Circuit
      In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located...In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located at the resonant frequency; the sharpness or width of the peak is known as the bandwidth. The bandwidth is related to a dimensionless quantity called the quality factor. A high quality factor value is a sharp or narrow peak.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/19%3A_Alternating-Current_(AC)_Circuits/19.06%3A_Resonance_in_an_AC_Circuit
      In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located...In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located at the resonant frequency; the sharpness or width of the peak is known as the bandwidth. The bandwidth is related to a dimensionless quantity called the quality factor. A high quality factor value is a sharp or narrow peak.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/10%3A_Alternating-Current_Circuits/10.06%3A_Resonance_in_an_AC_Circuit
      In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located...In the RLC series circuit, there is a resonant frequency where the inductive reactance equals capacitive reactance. The average power versus angular frequency plot for a RLC circuit has a peak located at the resonant frequency; the sharpness or width of the peak is known as the bandwidth. The bandwidth is related to a dimensionless quantity called the quality factor. A high quality factor value is a sharp or narrow peak.

    Support Center

    How can we help?